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Abstract— A novel code construction based on spatially
coupled low-density parity-check (SC-LDPC) codes is pre-
sented. The proposed code ensembles are comprised of several
protograph-based chains characterizing individual SC-LDPC
codes. We demonstrate that the code ensembles obtained by con-
necting appropriately chosen individual SC-LDPC code chains
at specific points have improved iterative decoding thresholds.
In addition, the connected chain ensembles have a smaller
decoding complexity required to achieve a specific bit error
probability compared to the individual code chains. Moreover,
we demonstrate that, like the individual component chains,
the proposed constructions have a typical minimum distance
that grows linearly with block length. Finally, we show that the
improved asymptotic properties of the connected chain ensembles
also translate into improved finite length performance.

Index Terms— Spatial graph coupling, spatially coupled codes,
connected chain ensembles, protographs, LDPC convolutional
codes, iterative decoding.

I. INTRODUCTION

IT HAS been shown that the asymptotic iterative decod-
ing performance of low-density parity-check convolu-

tional codes (LDPC-CCs), proposed in [1], also called
spatially-coupled LDPC (SC-LDPC) codes, coincides with
the optimal maximum a posteriori probability (MAP) decod-
ing performance of the underlying LDPC block codes
(LDPC-BCs) [2]–[5]. The explanation for this behavior is
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the phenomenon of spatial graph coupling that defines the
structure of SC-LDPC codes: parity-check nodes that are
located at the boundaries of the graph are connected to a
smaller number of variable nodes, creating stronger sub-graphs
with better protected variable nodes. As iterative message-
passing decoding progresses, the nodes of the stronger sub-
graphs at the boundaries generate more reliable information,
which propagates through the chain from iteration to iteration.

In this paper, we demonstrate that graph coupling can be
extended to more general structures. In particular, we propose
novel protograph-based ensembles, hereafter referred to as
“connected chain ensembles”, by connecting together several
individual SC-LDPC code chains (referred to as “single chain
ensembles”). Throughout the paper, we focus on an exemplary
ensemble obtained by connecting two (3, 6)-regular single
chains, called the “loop” ensemble, and demonstrate that
the chain connection results in improved iterative decoding
thresholds on the binary erasure channel (BEC) and the
binary-input additive white Gaussian noise (AWGN) channel
compared to individual (3, 6)-regular single chain ensembles
of the same rate. Using a density evolution analysis, we explain
the dynamics of decoding connected chain ensembles, where
reliable information propagates from several directions rather
than just from the ends of a single chain, thus enhancing
the convergence of the overall system and reducing decoding
complexity. We also provide new tools based on transfer
functions to facilitate the design and analysis of connected
chain ensembles.

We show that, like the component single chain ensembles,
the connected chain ensembles are asymptotically good, in the
sense that the minimum distance grows linearly with block
length. Moreover, we consider the finite-length performance
of connected chain ensembles and demonstrate via computer
simulations for the AWGN channel that the error probability
performance is superior to the codes obtained from single
chain ensembles of the same rate and length (and thus agreeing
with the finite-length scaling analysis in [6]). We note that
there are several degrees of freedom in the construction of
connected chain ensembles: the types of codes to be con-
nected, the lengths of the component chains, the connection
point positions, and the structure of the connections, all
of which play important roles in determining the decoding
characteristics and resulting performance of the connected
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chain ensembles. We conclude the paper with a short overview
of possible generalizations in the design of connected chain
ensembles.

Following our preliminary results [7]–[9], several research
groups have investigated connecting SC-LDPC code chains to
improve iterative decoding performance [10]–[12], to analyze
the finite-length behavior of such constructions [6], as well as
for various applications [13]–[16].

Multi-dimensional SC-LDPC codes were introduced in [10],
where, instead of a sequentially coupled SC-LDPC code proto-
graph, a two-dimensional coupled protograph was proposed.
While the two-dimensional codes are more robust to bursts
of erasures compared to one-dimensional single chains, they
do not have a threshold advantage and suffer from higher
termination rate loss. A class of multi-dimensional spatially
coupled repeat-accumulate codes was later applied to coded
cooperation over block-fading channels [13], demonstrating
their burst error-correction capabilities. Instead of creating
an entire connected two-dimensional array, a parallel inter-
connection of spatially coupled chains transmitted over par-
allel erasure channels was proposed in [14], where it was
demonstrated that a chain in a better channel can help in the
decoding of a chain in a degraded channel by making use of
the interconnections. A modification of this construction was
proposed in [11], where parallel interconnection was applied
to chains of different rates to create an irregular code chain.
This construction provides a flexible rate/threshold trade-off
over the BEC, depending on how many chains are connected
in parallel.

A code construction obtained by connecting tail-biting
SC-LDPC codes was proposed recently in [12]. The graph
structure of the proposed ensemble consists of two tail-biting
ring graphs with joint edges at the connection point. Following
a similar approach as presented in [7]–[9], the connected tail-
biting ensembles are optimized for BEC thresholds, decoding
complexity, and bit error rate performance. For longer chain
lengths, the connected tail-biting ensembles can outperform
the loop ensembles for some parameter settings, while for
shorter lengths the protograph based loop ensemble is superior.

A method of continuous transmission of coupled chains,
which consists of several chains connected sequentially via
multiple connection points, was proposed in [15], [16], where
it was shown that improved bit error rate performance com-
pared to single-chain codes can be achieved at a cost of
increased decoding complexity.

The goal of this paper is to present a general study of con-
nected chain ensembles, giving insight into the performance
improvement that can be obtained by connecting SC-LDPC
code chains. In particular, this includes the methodology and
guidelines for connecting chains to improve asymptotic and
finite length performance, along with a toolbox for code
designers to optimize designs for their desired applications.

II. SINGLE CHAIN ENSEMBLES

We start by considering a single chain SC-LDPC code
ensemble. Without loss of generality, we demonstrate our
approach on an ensemble of coupled (3, 6)-regular LDPC

Fig. 1. Tanner graphs associated with (a) a chain of L uncoupled
(3, 6)-regular LDPC-BC protographs for L = 8 and (b) a single chain of
L spatially coupled (3, 6)-regular LDPC-BC protographs for L = 8. The
larger circles in the figure correspond to parity-check nodes and the smaller
solid circles correspond to variable nodes. Also shown in (c) is a simplified
illustration of the (3, 6)-regular single chain protograph of length L = 8. Each
node illustrates a segment consisting of one check node and two variable
nodes.

codes, constructed by means of protographs [17]. A protograph
representing an LDPC code ensemble is a small bipartite graph
connecting a set of variable nodes to a set of parity check
nodes. Note that a protograph is different from the Tanner
graph of a particular LDPC code, since every node of a
protograph represents a set of M nodes in the Tanner graph of
a particular code and every edge represents a set of M edges.
The individual codes (members of the ensemble) are obtained
via all possible permutations of these M edges. As such, they
are represented by the same protograph. Therefore, a proto-
graph with a lifting factor of M describes an ensemble of
LDPC codes. It is an important feature of this construction
that each lifted code inherits the degree distribution and graph
neighborhood structure of the protograph.

A single chain SC-LDPC ensemble can be constructed by
coupling together several LDPC-BC ensembles by “spreading”
edges from variables nodes of each copy to neighboring check
nodes, forming a chain (see, e.g., [18]). Fig. 1 shows repre-
sentative Tanner graphs for (a) a group of L = 8 uncoupled
(3, 6)-regular LDPC-BC ensemble protographs, (b) a single
chain SC-LDPC ensemble protograph, and (c) a simplified
illustration of the single chain protograph where each segment
is illustrated by a single node. Note that, by coupling the
block code protographs in this way, we introduce a “structured
irregularity” into the coupled protograph. In this example
all of the variable nodes still have 3 edge connections;
however, the check nodes at the start and the end of the
chain are only connected to either 2 or 4 variable nodes.
For this (3, 6)-regular single chain SC-LDPC code ensemble,
we find that the threshold saturation effect improves the
belief propagation (BP) threshold (for a BEC with erasure
probability �) from the uncoupled BP threshold �BP = 0.4294
to a value numerically indistinguishable from the (optimal)
MAP threshold �MAP = 0.4881 as the coupling length L
becomes sufficiently large [2], [3].

The associated incidence matrix B of the protograph is
called the base matrix. The parity-check matrix H of a
protograph-based LDPC-BC can be created by replacing each
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TABLE I

BEC THRESHOLDS �∗ FOR SEVERAL LOOP ENSEMBLES L̄(3, 6, L) WITH CONNECTION PLACEMENT OPTIMIZED FOR BEC THRESHOLD MAXIMIZATION
ALONGSIDE THE THRESHOLDS OF THE CORRESPONDING LOOP ENSEMBLES L(3, 6, L) AND SINGLE CHAIN ENSEMBLES C(3, 6, L)

non-zero entry Bi, j in B by a sum of Bi, j non-overlapping
permutation matrices of size M and each zero entry by the
M × M all-zero matrix. In graphical terms, this can be viewed
as taking an M-fold graph cover or “lifting” of the protograph.
We denote the (3, 6)-regular single chain ensemble protograph
of length L by C(3, 6, L). The design rate of the ensemble
C(3, 6, L) is given by1

R(C(3, 6, L)) = L − 2

2L
, (1)

which increases monotonically with L and approaches 1/2
as L → ∞.

III. CONNECTED CHAIN ENSEMBLES

In this section, we present a thorough overview of connected
chain ensembles. Beginning with motivation in Section III-A,
we then proceed by presenting an example of a connected
ensemble, which we call the loop ensemble, in Section III-B.
We first focus on the BEC and demonstrate that the loop
ensemble has a better threshold compared to single chains
of the same rate. We then follow a density evolution analysis
to demonstrate the empirical reasons for threshold improve-
ment in Section III-C and study general properties of chain
interconnection in Section III-D. We then also demonstrate
improvements in terms of decoding complexity, threshold, and
finite length performance on AWGN channel, and we show
that the constructed ensembles are asymptotically good in
terms of minimum distance in Sections III-E, III-F, and III-G,
respectively.

A. Motivation
While it is customary to focus on threshold saturation for

long single chain ensembles and emphasize the role of the
coupling effect in their threshold improvement, shorter single
chains are important objects by themselves. As the length L of
the chain increases, starting from L = 3, we observe a spec-
trum of single chain ensembles C(3, 6, L) that demonstrate
a trade-off between rate and threshold (see Tables I and II).
In particular, we notice that for short chains the threshold for

1Here R denotes the design rate of the ensembles. The actual rate of a
particular member of the ensemble may be slightly higher due to possible
linear dependencies between the rows in its parity-check matrix.

TABLE II

AWGN CHANNEL THRESHOLDS IN TERMS OF σ∗ CALCULATED FOR

THE L(3, 6, L) LOOP ENSEMBLES AND THE C(3, 6, L) SINGLE

CHAIN ENSEMBLES FOR L = 8, 12, 15, AND 18

the BEC may exceed 0.5, which, of course, comes at the price
of rate loss (1). In addition to improved thresholds, spatially
coupled ensembles reduce the decoding complexity (in terms
of the number of operations performed per variable node)
required to achieve a desired decoding error probability.

Given these interesting properties and trade-offs of single
chain ensembles, we now consider new connected chain
ensembles for which single chains serve as building blocks.
We can set several goals or targets for such a construction. The
most obvious targets, which we focus on in this paper, include
improved rate/threshold trade-offs, faster convergence to the
limiting performance, and smaller decoding complexity. Other
targets could be, e. g., improved finite length performance
and unequal error protection [15]. Single chain ensembles of
the same rate can serve as reference points for performance
comparison.

One way to explain the basic intuition behind the benefits
of connecting chains is as follows. Throughout the decoding
process on a single chain, the reliable information spreads
from the graph boundaries to the middle part of the chain. In a
connected chain ensemble the connection points create other
strong sub-codes, enabling reliable information to propagate
from other parts of the graph, thereby improving decoding con-
vergence. In addition, longer chains are effectively broken into
shorter segments with better thresholds (see Section III-D).

B. Example: The Loop Ensemble
Consider two single chain protographs of length L con-

nected by edges as shown in Fig. 2 (a). The last segment of
the upper chain is connected to an inner segment of the lower
chain, while the first segment of the lower chain is connected
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Fig. 2. (a) Two single chain protographs of length L = 15 connected as a
loop. (b) Connection point in detail.

to an inner segment of the upper chain. The connections
between the end of one chain and the inner part of the other
chain are made as depicted in Fig. 2 (b). (Justification for
this design and variations on the construction will be given
later.) Recall that a parity check node located at the beginning
of a (3, 6)-regular SC-LDPC protograph chain has only two
outgoing edges, while the parity check node next to it has only
four outgoing edges (instead of 6). Focusing on the circled
connection in Fig. 2 (a), four extra edges are added to the
first check node of the lower chain and connected to variable
nodes in the upper chain. Similarly, two extra edges are added
to the second check node of the lower chain and connected
to variable nodes in the upper chain. The connection point
between the last segment of the upper chain and the inner
part of the lower chain is made in the same way.

The connection points are located at a distance of �L/3�
from the chain boundaries. We denote the loop ensemble
consisting of two (3, 6)-regular single chains of length L by
L(3, 6, L). Since the loop is constructed from two equal length
chains, the rate of this ensemble is equal to the rate of a single
chain, i.e.,

R(L(3, 6, L)) = R(C(3, 6, L)) = L − 2

2L
. (2)

C. Density Evolution and Iterative Decoding Convergence
Consider communication over a BEC with erasure probabil-

ity � using the L(3, 6, 15) loop ensemble and the C(3, 6, 15)
single chain ensemble. We utilize density evolution to compute
bit erasure probabilities at each node of the protograph for
every decoding iteration. Using this tool we relate the evo-
lution of the erasure probability to the node position in the

Fig. 3. Logarithm of the average bit erasure probability for the variable
nodes of the upper chain for the ensembles L(3, 6, 15) (solid curves) and
C(3, 6, 15) (dashed curves), as a function of the position of the node in the
chain. The curves (either solid or dashed) are computed for decoding iterations
1, 6, 11, . . . , 31 (from top to bottom). The three positions where the upper
chain is connected to the end of the lower chain in the loop are shown by the
triangles.

protograph and compare the erasure probability behavior of
the loop and single chain ensembles.

We denote the set of variable protograph nodes connected to
check node k by V(k) and the set of check protograph nodes
connected to variable node j by C( j). The probability that
the message passed from check node k to variable node j at
iteration i is an erasure is denoted by q(i)

kj . The probability of
an erasure message from variable node j to check node k is
similarly denoted by p(i)

j k . The following equations relate the
erasure probabilities of the messages at different iterations:

q(i)
kj = 1 −

∏
j ′∈V(k)\ j

(1 − p(i−1)
j ′k ) (3)

p(i)
j k = �

∏
k′∈C( j )\k

q(i)
k′ j . (4)

The variable node messages are initialized as p(0)
j k = � at

iteration 0. The bit erasure probability of the variable nodes
at iteration i can be calculated as

Pb( j) = �
∏

k∈C( j )

q(i)
kj . (5)

The evolution of the bit erasure probability for the variable
nodes of the L(3, 6, 15) ensemble is illustrated in Fig. 3. The
solid curves with circle markers correspond to the erasure
probability at each node position in the upper chain of the
loop at iterations 1, 6, 11, . . . , 31 (from top to bottom).2 The
dashed curves correspond to the erasure probability as a
function of the node position for the single chain ensemble
C(3, 6, 15) and iteration numbers 1, 6, 11, . . . , 31. The BEC
erasure probability is fixed to be � = 0.488. We notice that the
solid curves display lower error probability values with fewer

2Due to the symmetric nature of the loop construction, it is sufficient to
consider the evolution of the bit erasure probability for only one chain.
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iterations than the dashed curves, and hence it takes fewer
decoding iterations for the ensemble L(3, 6, 15) to converge
to a given bit erasure probability value.

Note that each dashed curve displays a symmetric concave-
shape; however, the shape of the solid curves is not symmetric.
This is due to the fact that the loop protograph is comprised
of two connected chains. The inner part of the upper chain is
connected to the lower chain by edges connecting to its nodes
at positions 4, 5, and 6, shown by triangles on the figure. Note
that the solid curves dip down at these positions since the lower
chain provides convergence improvement via the connection.
The connection point creates a stronger sub-graph in which the
variable nodes are connected to four check nodes instead of
three. This sub-graph distributes more reliable information to
its neighborhood (similar to the “open end,” positions 1 and 2,
of the upper chain) throughout the decoding process.

On the other hand, the rightmost open end of the upper chain
(positions 14 and 15) converges to low bit erasure probability
values more slowly than for the single chain. This can be
observed by comparing the solid curves to the corresponding
dashed curves. The reason for this behavior is the additional
connecting edges present at the end of the upper chain that are
now used to connect it to the lower chain, thereby increasing
the check node degrees. These edges are absent in the single
chain case. However, convergence at the end of the upper chain
improves with subsequent iterations as the lower chain starts
to converge, due to the increased connectivity of its variable
nodes. Eventually, the lower solid curve displays a concave
shape as a result of the more reliable information coming from
the lower chain.

To summarize, the two connected chains create a balanced
system in which one helps the other to converge and vice
versa. The distances between the connection points as well
as the positions of the edges connecting the two chains are
important parameters. Those parameters, employed in the
Fig. 2 example, were optimized in [8]. The results of the
optimization are intuitively satisfying: the connection points
should be sufficiently strong to enable the open ends and
the connection points to be robust, breaking the chains into
equal-size pieces that converge simultaneously (see [7], [8]
for details, as well as Section III-D for tools to analyze and
design such balanced systems).

The improved convergence behavior resulting from the
balanced exchange of reliable information between the two
chains implies more robustness to channel noise. One of the
consequences is seen in improved iterative decoding thresholds
of the connected chain ensembles. We recall that the BEC
iterative decoding threshold is the supremum of the values of
the erasure probability � for which codes from the ensemble
can be decoded reliably (for sufficiently large lifting fac-
tor M) [19], [20].

The BEC thresholds �∗ for loop ensembles with several
values of L between 8 and 20 are shown in Table I. The
first column shows the rate of the ensembles. The next
three columns list threshold values for the loop ensembles
L̄(3, 6, L) where the connection point position L ′ (the distance
between the connection point and the chain boundary) has
been optimized using Proposition 2 from Section III-D in

Fig. 4. BEC thresholds for the L(3, 6, L) loop ensembles as well as some
C(J, K , L) ensembles and (J, K )-regular LDPC-BC ensembles.

order to maximize the BEC threshold. The next three columns
present values for the regular loop ensembles L(3, 6, L) with
L ′ = �L/3�. The last two columns give the values for the
single chain ensembles of the same rate. It is observed that the
thresholds of the connected ensembles are always better than
the thresholds of the corresponding single chain ensembles.
Connecting the chains at a distance L ′ = �L/3� from the
chain boundaries results in the highest threshold in most
cases, however, for some lengths, such as L = 14, 17, 19, 20
connecting at distance L ′ = 	L/3
 gives better results, while
for L = 9 the best connection is at distance L ′ = 2.

AWGN channel thresholds for the loop ensembles
L(3, 6, L) are given in Table II for L = 8, 12, 15, and 18,
and the results for the corresponding single chain ensembles
C(3, 6, L) are shown for comparison. These AWGN channel
thresholds (given in terms of the standard deviation σ ∗ of the
noise) are computed using discretized density evolution [21].
This method is more complex than the Gaussian approxima-
tion, but it gives exact results for a quantized AWGN channel
model and hence provides a strict bound on the thresholds
of the continuous AWGN channel. The trade-off between
complexity and accuracy can be controlled by the number of
quantization intervals and the supported range. The presented
results correspond to 8 bit quantization of the log-likelihood
ratios within the interval [−20, 20]. Again, we notice that the
thresholds of the loop ensembles are significantly better than
for the corresponding single chains.

Fig. 4 shows the BEC thresholds for the L(3, 6, L) ensem-
bles in comparison to the C(3, 6, L) and C(4, 8, L) single chain
ensembles for a variety of chain lengths L. Comparing the
L(3, 6, L) ensembles to the C(3, 6, L) ensembles, we observe
that, for L > 5, the thresholds of the loop ensembles are
generally superior although the thresholds converge as L
increases.3. In particular, we observe a dramatic threshold
improvement for the loop ensembles with rates in the region
0.33 ≤ R ≤ 0.47. The thresholds of the single chain
ensembles C(3, 6, L) and C(4, 8, L) are observed to converge

3Again, this is intuitive since the two connection points have diminishing
contributions as the chains grow longer. Convolutional constructions with a
linearly growing number of connection points can maintain the advantage,
however (see [15]).
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Fig. 5. The loop L(3, 6, 15) consisting of two C(3, 6, 3) sub-chains, two C(3, 6, 9) sub-chains, and two connection points.

TABLE III

BEC THRESHOLDS �∗ FOR SEVERAL LOOP ENSEMBLES L(3, 6, L), UPPER AND APPROXIMATE LOWER BOUNDS

to values close to the MAP thresholds of the underlying
(3, 6)- and (4, 8)-regular LDPC-BC ensembles as L becomes
sufficiently large. As a result, for large L, we observe that
the iterative decoding thresholds of the C(4, 8, L) ensembles
are larger than those of the C(3, 6, L) ensembles (unlike the
corresponding LDPC-BC ensembles). However, even in this
region, i.e., for rates between 0.40 and 0.45, we observe that
the thresholds of the L(3, 6, L) ensemble remain above the
C(4, 8, L) thresholds. In general, using stronger components
can create stronger connected chain ensembles, i.e., loops
constructed using (4, 8)-regular single chain protographs can
achieve further performance improvement over those using
(3, 6)-regular single chains (see Section IV).

D. The Principles of Chain Interconnection
The overall connected ensemble protograph can be viewed

as comprised of a number of single chain protographs (sub-
chains) along with some simple protographs corresponding to
the connection points. In order to study the iterative decoding
performance of connected chain ensembles in more detail and
provide tools for their design, we now focus on the interaction
between the sub-chains and the connection point protographs
that comprise the overall protograph of the connected system
throughout the decoding process. The analysis principles we
present apply to a large variety of connected chain ensembles,
including connected regular C(J, K , L) chains and ARJA
and AR4JA chains (see Section IV). Here we illustrate the
approach using the L(3, 6, 15) ensemble as an example.

A graphical representation of the loop ensemble L(3, 6, 15)
and the six parts (sub-graphs) forming its protograph is given
in Fig. 5. The overall protograph consists of two C(3, 6, 3) sub-
chain protographs connected on only one side, two C(3, 6, 9)
sub-chain protographs connected on both sides, and two

connection point protographs, each consisting of one check
node of degree six and six variable nodes of degree four.

The edges exchanging information between the connected
sub-graphs are shown by dashed lines in Fig. 5. Note that the
dashed edges connect check nodes of the sub-chains to vari-
able nodes of the connection points. Throughout the decoding
process those edges carry messages of a certain reliability.
In order to produce an upper bound on the threshold of the
connected chain ensemble, we can assume that the messages
passed along the dashed connection edges are completely
reliable. This assumption is equivalent to disconnecting all
the sub-chains forming the connected chain ensemble and
decoding them separately. This observation leads us to the
following statement.

Proposition 1. The threshold of the connected chain ensemble
is upper bounded by the minimum of the thresholds of all its
sub-chains.

For the case of the loop ensemble, the threshold of
L(3, 6, 15) for the BEC equals 0.5105 and is upper bounded
by the minimum of the thresholds of C(3, 6, 3) and C(3, 6, 9),
which equals 0.512. Table III shows respective BEC threshold
upper bounds for loop ensembles of lengths 12, 15, and 18.

For the purpose of threshold analysis we consider the
following decoding schedule which runs on both global iter-
ation and local iteration clocks. We call it a global-local
schedule. In the first phase of each global iteration, all sub-
chains perform decoding until the probabilities of erasure at
all their nodes become fixed, i.e., a fixed point (or steady
state) is reached. This may require a different number of
decoding iterations for each sub-chain. In the second phase of
each global iteration connection points perform their variable-
check-variable node operations on the messages incoming



5610 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

from the connected sub-chains and return a new set of
messages to the sub-chains. Note that the overall thresholds
of connected systems for the conventional alternating check-
variable node decoding schedule and for the global-local
schedule coincide, although the global-local schedule may
require more iterations to converge. We consider it here,
however, because it simplifies the threshold analysis.

We now define several functions describing the change
of the erasure probability at the connecting edges for one
global iteration and use them to estimate the threshold of the
overall connected chain ensemble. Consider as an example a
protograph of the single chain ensemble C(3, 6, L) of length L
and assume that it has six additional edges outgoing from the
two check nodes located at the left end of the protograph
chain and six additional edges outgoing from the two check
nodes located at the right end of the protograph chain. Either
of the two sub-chains of length 9 depicted in Fig. 5 with six
connecting edges on each end illustrates the case of L = 9.
Assume that each of the six additional edges on the left end of
the chain carries a message with erasure probability pin,left and
each of the six additional edges on the right carries a message
with erasure probability pin,right.

Assuming a channel erasure probability of �, we perform
iterative decoding on the chain for a number of iterations until
all its nodes reach steady-state. After that we measure the
erasure probability on the additional edges on the left side
of the chain and define a function f (L)

out,left(pin,left, pin,right, �)
that equals the average erasure probability among the addi-
tional edges on the left. Similarly we define a function
f (L)
out,right(pin,left, pin,right, �) that gives the average erasure prob-

ability on the right. We call the functions f (L)
out,left(·) and

f (L)
out,right(·) input/output transfer functions.
We also now define an input/output transfer function for

the connection point. When all probabilities on the incoming
edges to the connection point are the same and equal to pin,
it is given by

gout(pin, �) = �p2
in

[
1 − (1 − �p3

in)
5
]

for the (3, 6)-regular LDPC connection point depicted
in Fig. 5. More generally, for (J, K )-regular LDPC connection
points where all the variable node degrees equal J + 1, it is
given by

gout(pin, �) = �pJ−1
in

[
1 − (1 − �pJ

in)
K−1

]
.

Fig. 6 demonstrates three bundles of transfer functions
corresponding to f (3)

out,right(0, pin, �), f (9)
out,left(pin, pin, �), and

g−1
out(pin, �) for � = 0.49, 0.5, 0.51, 0.52. The function

f (3)
out,right(0, pin, �) represents the behavior of the C(3, 6, 3)

ensemble, which has no connections at its left end and is
connected to the connection point at its right end within the
loop ensemble (see Fig. 5). Hence the first argument of the
function is set to 0 while the second argument is set to pin.
The function f (9)

out,left(pin, pin, �) represents the behavior of the
C(3, 6, 9) ensemble, which has connection points at both its
left and right ends. Due to the symmetry of the loop protograph

Fig. 6. Three bundles of transfer functions from right to left: a C(3, 6, 3)
chain connected from one side, a connection point, a C(3, 6, 9) connected
from two sides. The solid, dotted, dashed, and dash-dotted curves correspond
to � = 0.52, 0.51, 0.50, 0.49, respectively.

around the two connection points (see Fig. 5), we set the first
two arguments of the function to pin.

The function f (3)
out,right(0, pin, �) is (almost) linear for

small pin, but changes shape for larger pin. This behavior is
due to the fact that, for small pin, when the operating channel
erasure probability � is below the threshold of the single
chain ensemble C(3, 6, 3), the open-ended chain converges
and therefore the output is dominated by a function of the
input probability pin (which is kept constant). In turn, for
small pin the output function is dominated by its linear terms.
The situation is similar for f (9)

out,left(pin, pin, �) in the case of
small pin, e.g., � = 0.49, 0.5, and 0.51, which are all below
the convergence threshold 0.512 of C(3, 6, 9). However, as pin
grows, there is a sharp transition to another regime in which
the input probability is too large for the chain to converge,
even below its threshold. For the case of � = 0.52, the chain
does not converge, even for pin = 0, and therefore the linear
behavior is not present.

Now consider once again the connected system represen-
tation given in Fig 5. Due to symmetry, we can focus on
one connection point which connects two C(3, 6, 9) sub-
chains and one C(3, 6, 3) sub-chain. In order to determine the
loop threshold, we match the input/output transfer function
of the connection point to the average input/output transfer
function of the sub-chains. Note that, by averaging the input
and output probabilities over the six edges connecting each
sub-chain to the connection point, the computed threshold
values are approximate. They are nevertheless close to the
true threshold values (see Table III). We now formulate the
developed analysis approach as a Proposition for the general
case of L(3, 6, L) loop with connection points located at
distance L ′ from the chain boundaries.

Proposition 2. The threshold of the loop ensemble is approx-
imately equal to the maximum channel erasure probability �
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Fig. 7. The input/output transfer function chart for the case of (a) � = 0.5103 and (b) � = 0.5040. By pin we denote the average input probability to the
connection point and by pout the average output probability.

such that the only non-negative fixed point of the equation

p = gout

(
1

3

(
f (L ′−1)
out,right(0, p, �)

+ 2 f (L−L ′−2)
out,left (p, p, �)

)
, �

)
, (6)

or equivalently

g−1
out(p) = 1

3

(
f (L ′−1)
out,right(0, p, �)

+ 2 f (L−L ′−2)
out,left (p, p, �), �

)
, (7)

is p = 0, where L ′ is the distance from the connection point
to the chain boundaries.

Fig. 7 demonstrates an input/output transfer function chart
corresponding to Proposition 2 for the case of (a) � = 0.5103
and (b) � = 0.5040. The dash-dotted curves correspond to
the average connection point input for the case of the loop
ensemble L(3, 6, 15) (see the right hand side of (7)). The
dashed curves correspond to the average connection point
input for the case of a slightly modified loop ensemble with the
same inner chains C(3, 6, 9) but longer outer chains C(3, 6, 4).
The latter case corresponds to L = 16, i.e. L(3, 6, 16) loop,
and L ′ = 6.

The connection point transfer function is shown as the
solid curve. We note that the transfer chart provides a good
indication of the system’s convergence threshold, which is the
BEC probability � for which the convergence tunnel between
the curves closes up. We also note that, for the example
illustrated in Fig. 7, the longer outer chain results in a lower
threshold for the overall connected system. Table III gives
the estimated thresholds obtained using input/output transfer
function charts and compares them to the upper bounds

obtained using Proposition 1 for the case of loop ensembles
L(3, 6, 8), L(3, 6, 12), L(3, 6, 15) and L(3, 6, 18).

We can now use Proposition 2 to find the optimal connection
point location L ′ for loop ensembles. Fig. 8 demonstrates the
threshold values of the L(3, 6, L), L = 6, 7, · · · , 21, (regular)
loop ensembles with L ′ = �L/3� (solid curve with circles)
and the loop ensembles L̄(3, 6, L) with optimized connection
point placement L ′ listed in Table I, Section III-C, obtained
by maximizing the predicted threshold value of Proposition 2
(dash-dotted curve with circles). The upper bounds on the
threshold values obtained using Proposition 1 are given by
the solid curve with stars for L(3, 6, L) and the dash-dotted
curve with stars for L̄(3, 6, L). The predicted thresholds given
by Proposition 2 are plotted by the solid curve with squares
for L(3, 6, L) and the dash-dotted curve with squares for
L̄(3, 6, L). We note that the approximation is very close for all
values of L, while the upper bound provides a good threshold
approximation for larger values of L as well.

Based on this example, we see that input/output transfer
function charts provide a useful tool for designing con-
nected chain ensembles. One can use the input/output transfer
function charts of the system components (sub-chains and
connection points) to visually estimate the critical channel
parameter � for which the decoding erasure probability reaches
a zero steady-state value for each part of the connected system.

E. Decoding Complexity
To compare the decoding complexity of connected and sin-

gle chain ensembles, we consider transmission over the BEC
and simultaneous decoding of the entire code graph, where
we employ the node updating schedule proposed in [22]. The
algorithm designates a target bit erasure probability Pb,max as
well as an update improvement parameter θ . Regular message
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Fig. 8. Threshold values for the loop L(3, 6, L) ensembles (solid curve with circles) and optimized loop L̄(3, 6, L) ensembles (dash-dotted curve with
circles) on the BEC compared to the upper bound given by Proposition 1 (solid and dash-dotted curves with stars) and the approximation of Proposition 2
(solid and dash-dotted curves with squares).

Fig. 9. The average number of updates per node Īeff as a function of the BEC erasure probability � (left) and the AWGN channel signal-to-noise ratio Eb/N0
(right) for the L(3, 6, 15) ensemble (curves with solid circles) and the C(3, 6, 15) ensemble (curves with hollow circles). The dashed curves are computed for
the updating schedule with improvement parameter θ = 0, while the solid curves are for θ = 10−2. The corresponding thresholds are given by vertical lines.

passing updates are performed for each variable or check node
with the following exceptions:

� no update for variable node j is performed if the bit
erasure probability Pb( j) < Pb,max;

� no update for any variable node j or any check node k is
performed if all the nodes in C( j) or V(k), respectively,
were not updated in the previous iteration;

� no update for variable node j is performed if the
potential improvement of the bit erasure probability is
less than θ , i.e., if

Pb,old( j) − Pb,new( j)

Pb,old( j)
< θ. (8)

We set the target bit erasure probability Pb,max to 10−5

and the resulting number of updates per node Īeff (for both
check and variable nodes), averaged over the node positions,
is considered as a measure of decoding complexity.

The average number of updates per node Īeff is plotted
in Fig. 9 (left) as a function of the BEC erasure probability
� for the single chain ensemble C(3, 6, 15) (hollow circles)
and the loop ensemble L(3, 6, 15) (solid circles). The dashed
curves correspond to the updating schedule with the improve-
ment parameter θ = 0 (in which case the nodes are always
updated), while the solid curves correspond to θ = 10−2. The
vertical straight lines indicate the iterative decoding thresholds
calculated for each construction with the corresponding update
schedule. We observe a significant complexity improvement
provided by the connected chain construction.

For transmission over the AWGN channel, Īeff is plotted as
a function of the signal-to-noise ratio Eb/N0 in Fig. 9 (right).
The update schedule parameter θ is defined according to (8),
where Pb,old( j) and Pb,new( j) are the bit error probabilities.
Again, the dashed curves correspond to θ = 0, while the solid
curves correspond to θ = 10−2, and the hollow circles indicate
the C(3, 6, 15) ensemble, while the solid circles indicate the
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Fig. 10. Bit error rates on the AWGN channel for codes chosen from the L(3, 6, 8) ensembles with M = 256 (dashed curve with squares) and M = 512
(solid curve with squares) as well as for codes chosen from the C(3, 6, 8) ensembles with M = 512 (dashed curve with circles) and M = 1024 (solid curve
with circles).

L(3, 6, 15) ensemble. The vertical straight lines show the
corresponding thresholds. We again observe that the loop
ensemble demonstrates a significant complexity improvement.

While Īeff is a convenient ensemble-based complexity mea-
sure, in order to compare the decoding complexity of finite-
size codes, both the number of protograph nodes and the
lifting factor M must be taken into account. Since the loop
ensemble has 6L + 4 protograph nodes, i.e., twice as many
as the corresponding single chain ensemble, a fair comparison
involves selecting a lifting factor half as large, i.e., M/2, for
the loop. The same scaling is applied in the simulation
results presented in the next section. The full complexity then
scales as Īeff M(3L + 2) per iteration, where Īeff is computed
as a function of the channel parameter separately for each
ensemble.

F. Simulation Results
In the previous sections we have observed that connected

chain ensembles have superior asymptotic decoding perfor-
mance when compared to corresponding single chain ensem-
bles. In this section we show that the connected chain structure
also translates into improved decoding performance for finite
code lengths by examining the finite length performance of
connected chain ensembles used for transmission over the
AWGN channel.

We consider two codes, one of length n = 8192 and
the other of length n = 16384, randomly selected from the

single chain ensemble C(3, 6, 8) with lifting factors M =
512 and M = 1024, respectively. In addition we randomly
pick two codes from the loop L(3, 6, 8) ensemble, one with
lifting factor M = 256 and the other with M = 512. The
corresponding code lengths are also n = 8192 and n = 16384,
respectively. The only condition imposed on the Tanner graphs
of the selected codes was the absence of cycles of length four.
The rate of all codes approximately equals R = 0.375. The
BERs for transmission over the AWGN channel are plotted
in Fig. 10 as functions of Eb/N0. The solid curves correspond
to the BERs for the codes of length 16384 from the loop
(solid curve with squares) and the single chain (solid curve
with circles) ensembles, respectively. The BERs for the codes
of length 8192 are given by the dashed curve with squares
(loop ensemble) and the dashed curve with circles (single
chain ensemble). The asymptotic iterative decoding thresholds
for C(3, 6, 8) and L(3, 6, 8) ensembles are shown by the
solid bars and equal to 1.19dB and 0.78dB respectively. The
thresholds are computed from the values σ ∗ given in Table II
and represented in terms of Eb/N0. The simulated curves were
obtained with 100 decoding iterations.

We note that the loop ensemble codes show better decoding
performance and deliver a gain of approximately 0.4 dB with
respect to the single chain ensemble codes. This happens
despite the fact that the loop codes have smaller lifting fac-
tors M . Similar behavior has been demonstrated in [6], where
the loop and single chain ensemble codes were compared for
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TABLE IV

MINIMUM DISTANCE GROWTH RATES FOR SEVERAL
LOOP AND SINGLE CHAIN ENSEMBLES

transmission over the BEC, and the bit erasure rate curves
were derived using an analytical approximation.

G. Minimum Distance Analysis
We define the asymptotic spectral shape of a linear code

ensemble as
r(δ) = lim sup

n→∞
rn(δ), (9)

where rn(δ) = 1
n ln(A�δn�), δ = d/n is the normalized

Hamming distance d , n ∈ N is the block length, and Ad is the
ensemble weight enumerator. Suppose that the first positive
zero crossing of r(δ) occurs at δ = δmin. If r(δ) is negative
in the range 0 < δ < δmin, then δmin is called the minimum
distance growth rate of the code ensemble. By considering the
probability

Pr(d < nδmin) ≤
�nδmin�−1∑

d=1

Ad =
�nδmin�−1∑

d=1

enrn (d/n),

one can show (see references below) that, as the block length n
becomes sufficiently large, Pr(d < nδmin) � 1, since rn(δ) <
0 for δ ≤ δmin. Then we can say that with high probability
a code, randomly chosen from the ensemble, has a minimum
distance that is at least as large as nδmin, i.e., the minimum
distance increases linearly with block length n. We refer to
such an ensemble of codes as asymptotically good.

A technique to calculate the asymptotic spectral shape
r(δ) for protograph-based block LDPC code ensembles was
presented in [23], [24], and it was shown in [25]–[27] that
ensembles of protograph-based (J, K )-regular single chain
ensembles are asymptotically good. In this section we present
the results of a similar protograph-based analysis for connected
chain ensembles and demonstrate that they share the good
distance properties of the individual chains.

The asymptotic minimum distance growth rates computed
for the ensembles L(3, 6, L) are given in Table IV. We observe
that, like the individual chain ensembles, the L(3, 6, L) ensem-
bles are asymptotically good. As the length of the two chains
forming the loop increases, the rate of the ensemble increases,
the iterative decoding thresholds approach the optimum maxi-
mum a posteriori probability (MAP) decoding thresholds, and
the minimum distance growth rate decreases. This is analogous
to the effect of increasing the length L for the single chain
ensemble C(3, 6, L) [18].

Fig. 11. Two single chain protographs of length L = 12 connected by two
bridges of length Lb = 6 (a square ensemble).

We note that connecting two single chain protographs as
proposed in this paper can only increase the number of edges
at the variable nodes. It is known that any protograph where
all the variable nodes are of degree three or larger corresponds
to an asymptotically good ensemble [24]. Hence, connecting
single-chain ensembles with variable nodes of degree three or
higher guarantees that the connected ensemble is also asymp-
totically good. We notice that for L < 6 the loop ensembles
have superior minimum distance growth coefficients compared
to the single chains, since the connection points contribute
significantly to the increase in the number of edges per variable
node in the loop ensemble. For larger L, the growth coefficient
of the loop is below that of the corresponding single chain,
approaching approximately half of its value as L grows. This is
expected, since for large L the connecting edges play a minor
role from the minimum distance perspective and the loop acts
like a collection of two single chains.

IV. DEGREES OF FREEDOM IN CONSTRUCTION

There are numerous degrees of freedom that can be used
in constructing connected chain ensembles. In this section we
present several promising ensembles designed by connecting
single chain ensembles according to the chain interconnection
principles discussed in Section III-D.

Connected chain ensembles can be constructed with a vari-
ety of connection geometries. For example, a square ensemble
is constructed by connecting two longer parallel single chains
of length L to two shorter chains of length L/2 called bridges.
A graphical representation of a square ensemble with L = 12
is shown in Fig. 11. The four connection points, that have
the same structure as those depicted in Fig. 2 (b), are located
such that the inner part of the resulting protograph forms a
square. It has been shown in [9] that, for both the BEC and
AWGN channels, square ensembles outperform single chain
ensembles of the same rate in terms of both threshold and
decoding complexity.

The improvements resulting from chain interconnection also
extend to codes with higher node degrees. To illustrate this
point, we consider two types of loop ensembles constructed
from (4, 8)-regular chains, one with the connection point
depicted in Fig. 12 (a) and the other with the connection
point shown in Fig. 12 (b). The first type of connection
point is designed to keep the check node degree constant,
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Fig. 12. Two ways of connecting (4, 8)-regular protograph chains. The connecting edges are shown with dashed lines.

TABLE V

BEC THRESHOLDS �∗ FOR THE LOOP ENSEMBLE L(3, 9, L)
AND THE SINGLE CHAIN ENSEMBLE C(3, 9, L)

Fig. 13. Example connection point of two single chain AR4JA ensembles.

while the second type, which is the same as for the (3, 6)
code chain in Fig. 2, has some reduced check node degrees.
The geometry of the loop is the same as for the L(3, 6, L)
ensemble, in the sense that the connection point splits a chain
of length L into a short chain of length �L/3� and a long
chain of length �2L/3�. Both loop ensembles outperform their
corresponding single chain ensemble in terms of thresholds
and decoding complexity, as shown in [8], while the loop with
the second type of connection point exhibits the best threshold.

Connected chain ensembles with improved properties can
also be constructed from codes with base rates other than 1/2.
For example, Table V compares the BEC thresholds �∗ of
the loop ensemble L(3, 9, L) and the single chain ensemble
C(3, 9, L) and demonstrates improved thresholds for the loop.
Different types of chains can also be mixed in a connected

TABLE VI

BEC THRESHOLDS �∗ FOR SEVERAL SINGLE CHAIN ENSEMBLES
CAR4JA (L) AND LOOP ENSEMBLES LAR4JA (L)

TABLE VII

BEC THRESHOLDS �∗ FOR SEVERAL SINGLE CHAIN ENSEMBLES

CARJA(L) AND LOOP ENSEMBLES LARJA(L)

construction, as presented in [7], where a loop consisting
of a (3, 6) chain and a (4, 8) chain was shown to have a
BEC threshold better than the individual thresholds of both
connected single chains.

Chain interconnection can improve the properties of more
advanced connected chain ensembles as well. Fig. 13 shows an
example of a connection point for constructing a loop ensem-
ble from two single chain AR4JA ensembles [24] that were
shown to perform close to the BEC capacity limit [18]. Con-
sidering loops with the same geometry as for the L(3, 6, L)
ensemble, Table VI lists the BEC thresholds �∗ of the single
chain AR4JA ensembles CAR4JA(L) with L = 6, 10, 12, and
15 (see [18]) along with the thresholds of the loop ensembles
LAR4JA(L) constructed by connecting two single CAR4JA(L)
chains. Again we note the improved thresholds of the loop
ensembles. The same trend is observed when connecting single
ARJA chains, as shown in Table VII, where the thresholds of
the single chain CARJA(L) and loop LARJA(L) ensembles are
compared.

Finally, we note that the improvement in decoding con-
vergence of connected chain ensembles that manifests itself
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both in terms of improved thresholds and reduced decoding
complexity also translates to improved finite-length decoding
error probability performance, as discussed in [6]. Further,
we note that the connection of single chains can be done in a
continuous fashion, thereby forming an infinite convolutional-
like ensemble, as described in [15].

V. CONCLUSIONS

The connection of spatially coupled protograph chains
provides an approach to extending the spatial graph coupling
phenomenon from simple (single chain) graph coupling to
more general coupled structures. We have presented several
new types of protograph-based spatially coupled code ensem-
bles formed by connecting single spatially coupled chains.
These ensembles exhibit improved thresholds and reduced iter-
ative decoding complexity. Input/output transfer functions of
the components of a connected chain ensemble were shown to
provide an indication of the limits of the decoding convergence
of the connected chain ensemble, thus allowing their use as a
tool to build more advanced structures.

Simulation results demonstrate that the asymptotic threshold
and complexity improvements translate into improved finite-
length performance. Moreover, we showed that the connected
chain ensembles are asymptotically good in terms of minimum
distance. Finally, we note that the principle of coupled chain
connection is very general and may give rise to many other
novel spatially coupled code ensemble constructions.
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